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TRANSIENT TEMPERATURE IN A POROUS TUBE

M, D, Mikhailov UDC 536.245:532.,546

An analytical solution is given for the transient temperature distribution in a porous tube
with generalized boundary conditions at the inner and outer surfaces.

Porous cooling is an efficient method of thermal protection under conditions of high thermal loads; it
is used in cooling the nozzles of rocket motors, the walls of aerodynamic tubes, experimental instruments
for short-lived phenomena, etc, In connection with this, great interest attaches to the temperature distri-
bution across the thickness of a porous wall. The steady-state problems are studied in [1-8].

It can happen in many cases that the expenditure of coolant will be excessively great if it is deter-
mined from the solution for a stationary temperature field, and will be found to be within reasonable limits
if it is determined on the basis of a solution for a nonstationary system. Therefore the transient tempera-
ture of a flat porous wall is studied in [9-13].

A golution which can be used to calculate the nonstationary temperature distribution in a porous tube
was obtained in [14] by the method of finite integral transformations, although its application to porous
cooling was not shown, Later in [15] a solution was obtained by the method of separation of variables for
the temperature of a porous tube for two different boundary conditions at the outer surface of the tube:con-
vective heat exchange with the surrounding medium; and a constant heat flux at the surface. After uncom-
plicated transformations the solutions obtained [15] can be presented in a more compact form, Because
the solutions in [15] are rather cumbersome and require a large amount of calculating work, in [16] it was
proposed to use the method of finite integral transformations. It must be said that the solution obtained in
[16] is less cumbersome than that in [15] since the authors have solved the problem with simplified bound-
ary conditions,

An analgtical solution for the nonstationary temperature distribution in a porous tube is given in the
present note on the basis of a solution of the generalized transport equation given by the authors in [17].

The temperature field of a porous tube is described by the equation [15]
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where ¢, Fo, and Po() are the dimensionless coordinate, the Fourier number, and the internal heat source,
respectively, while v is a parameter of the coolant flow rate.

Equation (1) will be solved for the boundary conditions
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where Ay, By, Ay, By, by, and by are fixed constants. By an appropriate choice of these constants, it is pos-
sible, without difficulty, to obtain as particular cases the solutions given in [14-16], where £3(8 = const and
Po = 0.
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We note in passing that an approximate calculation of the three-dimensional heat-conduction problem
is reduced to an analogous one-dimensional problem in [18],

Equation (1) can be presented in the form
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from which it is seen that it is a particular case of a more general transport equation the solution of which
is given in [17] in the form of series of eigenfunctions.

In the case under examination the eigenvalues K and the eigenfunctions ¢; () are determined by the
following Sturm-— Liuville problem:
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Comparing (6) with the generalized Bessel equation obtained by Douglas and presented in [19], we
find
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The boundary condition (7) is satisfied if we set
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while (8) gives the following characteristic equation for determining i;:
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Then the solution of [17] is obtained in the following forms
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For boundary conditions of the second type at both surfaces of the tube, i.e., when by = by = 0, the
solution of [17] has the form
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From Eqgs. (13) and (15) for » = 1/2, 0, and —1/2 solutions may also be obtained for bodies of simple
form without taking into account convective heat transport,
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