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An analyt ica l  solution is given for  the t r ans ien t  t e m p e r a t u r e  dis tr ibut ion in a porous  tube 
with genera l i zed  boundary  conditions at the inner and outer  s u r f a c e s .  

Porous  cooling is an efficient  method of t h e r m a l  protec t ion  under conditions of high t h e r m a l  loads;  it 
is used  in cooling the nozzles  of rocke t  m o t o r s ,  the walls of ae rodynamic  tubes,  expe r imen ta l  ins t ruments  
for  sho r t - l i ved  phenomena,  e tc .  In connection with th is ,  g rea t  in te res t  a t taches  to the t e m p e r a t u r e  d i s t r i -  
bution a c r o s s  the th ickness  of a porous  wail .  The  s t eady- s t a t e  p rob l ems  are  studied in [1-8]. 

It can happen in many  ca se s  that the expenditure of coolant will be exces s ive ly  g rea t  if it is d e t e r -  
mined f r o m  the solution for  a s t a t ionary  t e m p e r a t u r e  field,  and will be found to be within reasonab le  l imi t s  
if  it is  de te rmined  on the bas i s  of a solution for  a nonsta t ionary  s y s t e m .  T h e r e f o r e  the t rans ien t  t e m p e r a -  
tt tre of a f lat  porous  wall  is studied in [9-13]. 

A solution which can be used to ca lcula te  the tmnsta t ionary  t e m p e r a t u r e  dis tr ibut ion in a porous  tube 
was obtained in [14] by the method of finite in tegra l  t r ans fo rma t ions ,  although its applicat ion to porous  
cooling was not shown. La te r  in [15] a solution was obtained by the method of separa t ion  of var iab les  for  
the t e m p e r a t u r e  of a porous  tube for  two different  boundary conditions at the outer  sur face  of the tube :con-  
vect ive heat exchange with the surrounding medium;  and a constant  heat flux at the su r face .  After  uncom-  
pl ica ted  t r a n s f o r m a t i o n s  the solutions obtained [15] can be p resen ted  in a m o r e  compact  f o r m .  Because  
the solutions in [15] a r e  r a t h e r  c u m b e r s o m e  and requ i re  a l a rge  amount of calculat ing work,  in [16] it was 
p roposed  to use  the method of finite in tegra l  t r a n s f o r m a t i o n s .  It must  be said that the solution obtained in 
[16] is l e ss  c u m b e r s o m e  than that in [15] since the authors  have solved the p rob lem with s impl i f ied  bound- 

a ry  condit ions.  

An analyt ical  solution for  the nonsta t ionary  t e m p e r a t u r e  dis t r ibut ion in a porous  tube is given in the 
p re sen t  note on the bas i s  of a solution of the genera l ized  t r anspo r t  equation given by the authors  in [17]. 

The t e m p e r a t u r e  f ield of a porous  tube is desc r ibed  by the equation [15] 

00(~, Fo) 1 O (~ 00(~, Fo) ~ 2v O0(~, Fo) ~-Po(~), (1) 

~o'< ~ ~ ~1, Fo~O,  

where  ~, Fo,  and Po(~) a re  the d imens ion less  coordinate ,  the F o u r i e r  number ,  and the in ternal  heat source ,  
r e spec t ive ly ,  while u is a p a r a m e t e r  of the coolant flow r a t e .  

Equation (1) will  be solved for  the boundary conditions 

0 (~, O) = fo (~), (2) 

Ao 00 (~o, F o) + Bo O (~, Fo) = b o, (3) 
og 

A1 O0 (.~1, Fo) + B10 (~1, Fo) = bl, (4) 
og 

where A0, B0, A1, BI, b0, and b 1 a r e  fixed cons tan ts .  By an appropr ia t e  choice of these constants ,  it is pos -  
s ible ,  without difficulty,  to obtain as pa r t i cu l a r  e a se s  the solutions given in [14-16], where  f0(~) = const  and 

Po(~) = o. 
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We note in passing that an approximate calculation of the three-dimensional  heat-conduction problem 
is reduced to an analogous one-dimensional  problem in [18]o 

Equation (1) can be presen ted  in the form 

~I-2v O0(~, Fo) __ 0 (~l-2v 00(~, Vo) )@~l_2Vpo(~) ' (5) 
] 

from which it is seen that it is a par t icular  ease  of a more  general  t ranspor t  equation the solution of which 
is given in [17] in the form of s e r i e s  of eigenfunctions.  

In the case  under examination the eigenvalues /~i and the eigenfunctions r (~) a re  determined by the 
following S t u r m -  Liuville problem : 

t--2v (6) 
r (~) + - -  t , '  (~) + ,,~, (~) = o, 

Ao~' (~o)" Bor (~o) = O, (7) 
&,K (~,) + G ~  (h) = 0. (8) 

Comparing (6) with the general ized Besse l  equation obtained by Douglas and presented  in [19], we 
find 

, (~) = ~, {c,J,, (vg) + GY,, (~)}.  

The boundary condition (7) is sat isf ied if we set  

cl = ~ 0 ~  (.~o) + , ~ A J . _ ,  (,%), 

G = - -  BoJ ,  ( ~ o )  - -  ~AoJ~_~ (~o) ,  

while (8) gives the following charac te r i s t ic  equation for  determining Pi: 

B0g , (~;) + ~AoY,~ 1 (~0) B y ,  (gh) + ~AY,L  ( ~ )  
BoJ,~ (~t~o) + ~tAoJ,~-i (P~o) Bj,, (~t~) + ~A~J,~_ 1 (p~) 

(9) 

(10) 
(11) 

(12) 

Then the solution of [17] is obtained in the following form~ 

0(~, Fo)= {boAl~I-~v--blAo~l-2v+ (~o~1)I-2v [ boB1 i ' - -  

.G 

+(blBo__boB1) .f ~ 1  + [Bo~_2v j" ~d~l-2v Ao] 

G G ~~ 

d~ 
~l--2v 

1 

%o 

t g= l 

~o i=1 

g~ 
2 . BoJ,, (~igo) + t~iAoJ, . (.aigo) __ b0 ~ + gl-2, ~, (g) Po (~) d~ , 

go 

(13) 

where 

= - A2,11 
For boundary conditions of the second type at both surfaces of the tube, i.e., when b0 = bl = 0, the 

solution of [17] has the form 

(14) 
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0(~, Fo)-- ~, ~'-2~f~ ~ A~ 
~-2~ d~ ~0 

b 
h ~ g 

~0 go b 
h ~ g 

h ~ g 

go go go ~. 

g1-=, (g) 

~-~+ fo(~) d ~ - -  . . .  bl 
i=1 ~o 

AoJ,-1 (~g0) b0 - -2~  ~-2~ ~ (~) Po (~) dg . (15) 
X All~-t (~h~l) ab 

b 
From Eqs.  (13) and (15) for ~ = 1/2, 0, a n d - l / 2  solutions may also be obtained for bodies of simple 

form without taking into account convective heat transport.  
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